Self recognition in allogeneic radiation bone marrow chimeras. A radiation- resistant host element dictates the self specificity and immune response gene phenotype of T-helper cells
Open Access
- 1 May 1981
- journal article
- research article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 153 (5), 1286-1301
- https://doi.org/10.1084/jem.153.5.1286
Abstract
The specificity of the self-recognition repertoire in fully allogeneic (A {arrow} B), semiallogeneic (A {arrow} A x B and A x B {arrow} A), and double donor (A + B {arrow} A) radiation bone marrow chimeras was assessed by the ability of their spleen cells to generate in vitro primary plaque-forming cell (PFC) responses to trinitrophenyl- keyhole limpet hemocyanin. In contrast to spleen cells from semiallogeneic and double donor chimeras, intact spleen cells from fully allogeneic BI0 {arrow} B10.A and B10.A {arrow} B10 chimeras were not capable of generating responses to trinitrophenyl (TNP)-keyhole limpet hemocyanin. However, cultures containing a mixture of both B10 {arrow} B10.A and B10.A {arrow} B10 spleen cells did respond, demonstrating that all the cell populations required for the in vitro generation of T-dependent PFC responses were able to differentiate into functional competence in a fully allogeneic major histocompatibility complex (MHC) environment. The self recognition repertoire of T-helper cells from fully allogeneic A {arrow} B chimeras was determined to be specific for the recognition of host, not donor, MHC determinants in that they were able to collaborate with cells expressing only host MHC determinants but not with cells expressing only donor MHC determinants, even though the functional lymphocytes in these chimeras were shown to be of donor origin. Experiments utilizing double donor A + B {arrow} A chimeras further demonstrated that the ability of chimeric T cells to recognize allogeneic MHC determinants as self structures was a function of a radiation-resistant host element and not simply a consequence of the tolerization of T cell precursors to allogeneic MHC determinants, because strain A lymphocytes isolated from A + B {arrow} A chimeras were tolerant to both A and B MHC determinants but were restricted to the self recognition of syngeneic host type A MHC determinants. Finally, the Ir gene phenotype expressed by B10 {arrow} B10.A and B10.A {arrow} B10 chimeric lymphocytes was determined by their ability to function in the Ir gene controlled response to TNP-poly-L-(Tyr,Glu)-poly-D,L-Ala-poly- L-Lys [(T,G)-A--L]. The ability of lymphocytes to function in TNP-(T,G)-A--L responses was not determined by their genotype but rather paralleled the specificity of their self recognition repertoire for high responder (H-2 (b)) determinants. The possible degeneracy of the MHC-specific self recognition repertoire is discussed, and a model is proposed for Ir gene regulation in which expression of Ir gene function by lymphocytes is an antigen-nonspecific consequence of the specificity and cross-reactivity of their self recognition repertoire.Keywords
This publication has 28 references indexed in Scilit:
- On the thymus in the differentiation of "H-2 self-recognition" by T cells: evidence for dual recognition?The Journal of Experimental Medicine, 1978
- Cellular and genetic control of antibody responses in vitro 1.cellular requirements for the generation of genetically controlled primary IgM responses to soluble antigensEuropean Journal of Immunology, 1977
- In a radiation chimaera, host H–2 antigens determine immune responsiveness of donor cytotoxic cellsNature, 1977
- In vitro secondary mixed leukocyte reaction (MLR)European Journal of Immunology, 1977
- Nature of the antigenic complex recognized by T lymphocytes: specific sensitization by antigens associated with allogeneic macrophages.Proceedings of the National Academy of Sciences, 1977
- Role of the Murine Major Histocompatibility Complex in the Specificity of in vitro T‐Cell‐Mediated Lympholysis Against Chemically‐Modified Autologous LymphocytesImmunological Reviews, 1976
- Collaboration of histoincompatible T and B lymphocytes using cells from tetraparental bone marrow chimeras.The Journal of Experimental Medicine, 1975
- SYNERGY BETWEEN SUBPOPULATIONS OF MOUSE SPLEEN CELLS IN THE IN VITRO GENERATION OF CELL-MEDIATED CYTOTOXICITYThe Journal of Experimental Medicine, 1974
- FUNCTION OF MACROPHAGES IN ANTIGEN RECOGNITION BY GUINEA PIG T LYMPHOCYTESThe Journal of Experimental Medicine, 1973
- CELL INTERACTIONS BETWEEN HISTOINCOMPATIBLE T AND B LYMPHOCYTESThe Journal of Experimental Medicine, 1973