Abstract
The results of experiments in which the prolactin in the primiparous rat pituitary was bioassayed suggested that the failure of suckling to release prolactin after 8 h of non-suckling on day 21 post-partum was due to the fact that prolactin had been discharged from the pituitary during the 8-h non-suckling period, presumably by exteroceptive signals emanating from the general environment of the animal room. This was substantiated in other experiments in which prolactin release was assessed indirectly through its stimulatory effects upon milk secretion. In these experiments, the mammary glands of rats maintained continuously in the animal room filled faster on day 21 after complete emptying of the glands by exogenous oxytocin, than did either rats on day 14 post-partum maintained continuously in the animal room or rats isolated in a room without other rats on day 21 post-partum. The glands of the latter two groups of rats could be stimulated to fill faster provided prolactin was injected 4 h before the initial emptying of the glands. The exteroceptive stimuli in the animal room environment that stimulated the release of prolactin in the 21-day post-partum rat apparently emanated at least in part from other lactating rats and/or their litters, since faster mammary gland refilling occurred in isolated 21 day post-partum rats when they were exposed to the presence of lactating rats with their litters for 30 min halfway through the 8-h non-suckling period which preceded the initial emptying of the gland. Exposure to male rats, on the other hand, was totally ineffective. A release of prolactin occurred in response to animal room environmental stimuli in the day 14 primiparous rat provided 13–14 day old foster pups were inserted in place of the mother's own pups on day 7. Thus, the rapidly changing characteristics of the pups from 14 to 21 days of age in some manner is involved in the increasing responsiveness of the exteroceptive mechanism for prolactin release which occurs from day 14 to day 21 post-partum.