Abstract
The renal cell line LLC-PK1 cultured on a membrane filter forms a functional epithelial tissue. This homogeneous cell population exhibits rheogenic Na-dependentd-glucose coupled transport. The short-circuit current (I sc) was acccounted for by net apical-to-basolaterald-glucose coupled Na flux, which was 0.53±0.09(8) μeq cm−2hr−1, andI sc, 0.50±0.50(8) μeq cm−2hr−1. A linear plot of concurrent net Na vs. netd-glucose apical-to-basolateral fluxes gave a regression coefficient of 2.08. As support for a 2∶1 transepithelial stoichiometry, sodium was added in the presence ofd-glucose and the response ofI sc analyzed by a Hill plot. A slope of 2.08±0.06(5) was obtained confirming a requirement of 2 Na for 1d-glucose coupled transport. A Hill plot ofI sc increase to addedd-glucose in the presence of Na gave a slope of 1.02±0.02(5). A direct determination of the initial rates of Na andd-glucose translocation across the apical membrane using phlorizin, a nontransported glycoside competitive inhibitor to identify the specific coupled uptake, gave a stoichiometry of 2.2 A coupling ratio of 2 for Na,d-glucose uptake, doubles the potential energy available for Na-gradient coupledd-glucose transport. In contrast to coupled uptake, the stoichiometry for Na-dependentphlorizin binding was 1.1±0.1(8) from Hill plot analyses of Na-dependent-phlorizin binding as a function of [Na]. Although occurring at the same site the process of Na-dependent binding of phlorizin differs from the binding and translocation ofd-glucose. Our results support a two-step, two-sodium model for Na-dependentd-glucose cotransport; the initial binding to the cotransporter requires a single Na andd-glucose, a second Na then binds to the ternary complex resulting in translocation.

This publication has 49 references indexed in Scilit: