Controllable Magnetic Metamaterial Using Digitally Addressable Split-Ring Resonators

Abstract
An ideal metamaterial is composed of identical elements in a uniformly structured array so that the material response is a single magnetic or electric resonance. Variations in the metamaterial particle characteristics or array assembly result in undesirable broadening of the effective material response. When lumped circuit elements are used in metamaterial particles, this effect can be significant due to element variability. To mitigate this effect, we designed, fabricated, and characterized a magnetic metamaterial in which the response of each particle can be individually tuned. Such a material can be reconfigured into a variety of states for use in different applications.