Characterization of differentially expressed genes in purified Drosophila follicle cells: Toward a general strategy for cell type-specific developmental analysis

Abstract
Axis formation in Drosophila depends on correct patterning of the follicular epithelium and on signaling between the germ line and soma during oogenesis. We describe a method for identifying genes expressed in the follicle cells with potential roles in axis formation. Follicle cells are purified from whole ovaries by enzymatic digestion, filtration, and fluorescence-activated cell sorting (FACS). Two strategies are used to obtain complementary cell groups. In the first strategy, spatially restricted subpopulations are marked for FACS selection using a green fluorescent protein (GFP) reporter. In the second, cells are purified from animals mutant for the epidermal growth factor receptor ligand gurken (grk) and from their wild-type siblings. cDNA from these samples of spatially restricted or genetically mutant follicle cells is used in differential expression screens employing PCR-based differential display or hybridization to a cDNA microarray. Positives are confirmed by in situ hybridization to whole mounts. These methods are found to be capable of identifying both spatially restricted and grk-dependent transcripts. Results from our pilot screens include (i) the identification of a homologue of the immunophilin FKBP-12 with dorsal anterior expression in egg chambers, (ii) the discovery that the ecdysone-inducible nuclear hormone receptor gene E78 is regulated by grk during oogenesis and is required for proper dorsal appendage formation, and (iii) the identification of a Drosophila homologue of the human SET-binding factor gene SBF1 with elevated transcription in grk mutant egg chambers.