Xenopus borealis and Xenopus laevis 28 S ribosomal DNA and the complete 40 S ribosomal precursor RNA coding units of both species

Abstract
We have determined the nucleotide sequence of Xenopus borealis 28S ribosomal DNA (rDNA) and have revised the sequence of Xenopus laevis 28S rDNA (Ware et al., Nucl. Acids Res. 11, 7795-7817 (1983)). In the regions encoding the conserved structural core of 28S rRNA (2490 nucleotides) there are only four differences between the two species, each difference being a base substitution. In the variable regions, also called eukaryotic expansion segments (ca. 1630 nucleotides) there are some 61 differences, due to substitutions, mini-insertions and mini-deletions. Thus, evolutionary divergence in the variable regions has been at least 20-fold more rapid than in the conserved core. A search for intraspecies sequence variation has revealed minimal heterogeneity in X. laevis and none in X. borealis. At three out of four sites where heterogeneity was found in X. laevis (all in variable regions) the minority variant corresponded to the standard form in X. borealis. Intraspecies heterogeneity and interspecies divergence in the 28S variable regions are much less extensive than in the transcribed spacers. The 28S sequences are from the same clones that were used previously for sequencing the 18S genes and transcribed spacers. The complete sequences of the 40S precursor regions of the two reference clones are given.