Abstract
A recent model for hot-electron MOS transistors [4], [5] is generalized for short-channel field-effect transistors. It is based on six to seven parameters for the carrier mobility under the influence of transverse and Iongitudinal electric fields, for the threshold voltage and its dependence on drain bias, and for a finite longitudinal field at pinch-off. Such important features of short-channel FET's like reduced available current and voltage gain are well represented, where the latter turns up as important limiting factor in submicron devices. Effects of zero-field mobility, impurities, and device geometry are stated explicitly. The results are confirmed by measured data on 0.9-µm silicon gate MOSFET's.