We calculate the optical conductivity of one-dimensional Mott insulators at low energies using a field theory description. The square root singularity at the optical gap, characteristic of band insulators, is generally absent and appears only at the Luther-Emery point. We also show that only few particle processes contribute significantly to the optical conductivity over a wide range of frequencies and that the perturbative regime is recovered only at surprisingly large energies. We discuss possible applications of our results to quasi one-dimensional organic conductors.