Abstract
Uptake rate of a gas from a rat's subcutaneous gas pocket was divided by the surface area and by the apparent pocket-to-tissue tension difference to yield an exchange coefficient, K'. Values in (ml x 10–4)/(min cm2 atm) were O2, 6.6; CO2, 150; and N2, 2. Blood flow in adjacent tissue appeared to have little influence on uptakes of O2 and CO2, since the K'co2:K'o2 ratio indicated that the uptakes were governed by diffusion alone, and drastic alteration of blood flow (death of the animal) decreased K'o2 by only 10%. In contrast, blood flow apparently affected N2 uptake. Because O2 and CO2 uptakes were not blood flow limited, K'o2 and K'co2 are estimates of true permeability coefficients; the calculated permeability coefficient for N2 is 3.3 (ml x 10–4)/(min cm2 atm). Comparison shows the pocket surface to be 1/50–1/150 as effective for O2 transfer as the lung. Finally, corrections are calculated for pocket-to-tissue pO2 and pCO2 differences in gas pockets used for tissue tonometry.