Abstract
Pseudomonas aeruginosa (Schroeter) Migula antigen remained in the blood of larvae of the wax moth, Galleria mellonella (L.), during the resistant period of the insect. Bacterial antigen present in the immune blood produces agglutinating titers in rabbits about 10 times as great as those produced by an approximately equal volume of standard P. aeruginosa vaccine. Attempts to demonstrate the mechanism that enhances the antigen showed that the active portion was contained in the serum, that the action occurred within several hours in vivo and only reached the same level after 3 days in vitro mixture, and that the action was probably not caused by lysis of the bacterial cells and the consequent liberation of more antigen in the blood. Electrophoretic studies on the blood mixture indicated that the altered or enhanced antigen may be bound to a blood fraction, the exact nature of which was not determined. The larvae were actively or passively immunized against lethal doses of P. aeruginosa within 20 to 24 hours. Concentration of vaccine had little effect upon the degree of immunity conferred upon the larvae. The immunity lasted about three days and was more specific than nonspecific. The larvae were not actively protected against P. aeruginosa by introduction of albuminous foreign material into the body cavity. True antibodies were not detectable in the immune blood though the bactericidal action of immune blood was at least twice as great as that of normal blood. Preliminary investigations on immune responses of other lepidopterous insects to P. aeruginosa antigen and of the wax moth to antigens of some other Gram-negative bacteria indicated similar results.

This publication has 18 references indexed in Scilit: