Structure and energetics of Xe−n

Abstract
Diffusion Monte Carlo simulations were performed to determine the absolute binding energies of an excess electron to small clusters of xenon atoms (n≤19). It was found that clusters as small as Xe6 could bind the electron. The ground state wave function of the excess electron and the decomposition of the binding energy of the electron into kinetic and potential parts were determined for a number of small clusters. Large (n>50) and small clusters anions were then studied at finite temperatures using path integral Monte Carlo. In all cases the excess electron in small clusters was found to exist in very diffuse state extending well beyond the radius of the cluster. However, in large clusters the electron was localized within the bulk of the cluster. Various properties are presented to characterize the electron in Xen as function of cluster size and the results compared to an electron solvated in fluid xenon.