Pressure dependence of glass transition temperature of elastomeric glasses

Abstract
The pressure dependence of the glass transition temperature Tg of two elastomers, Solithane 113 and 3,3-bis(azidomethyl)oxetane/tetrahydrofuran (BAMO/THF) has been determined, employing high-pressure differential thermal analysis (HP-DTA) and dielectric techniques, up to 8.5 kbar. The glasses of the elastomers were named the specific (or Pi glass) or the general glass depending on how the glasses were formed. A Pi glass was formed by lowering temperature under a constant pressure (Pi) and the pressure dependency of the Pi glass was determined after changing pressure only in the glassy state. The general glass consists of a series of specific glasses but the Tg is determined only at pressures under which the glass is formed. The Tg for both glasses increased with increasing pressure. However, the Tg for the Pi glass appears to level off at very high pressures while the Tg does not level off for the general glass. Thermodynamic analysis was made to show that for many general glasses dTg/dP=Δβ/(1+n)Δα holds, in which n=1 for Solithane and many other glasses. It is also shown that a modified Gibbs and DiMarzio theory can be used effectively to predict the observed experimental results.