Abstract
In the presence of NaY faujasite, the reactions of dimethyl carbonate (DMC) with several ambident nucleophiles such as o- and p-mercaptophenols (1a,b), o- and p-mercaptobenzoic acids (2a,b), o- and p-hydroxybenzoic acids (3a,b), mandelic and phenyllactic acids (4, 5), have been explored under batch conditions. Highly chemoselective reactions can be performed: at 150 degrees C, compounds 1 and 2 undergo only a S-methylation reaction, without affecting OH and CO2H groups; at 165 degrees C, acids 3-5 form the corresponding methyl esters, while both their aromatic and aliphatic OH substituents are fully preserved from methylation and/or transesterification processes. Typical selectivities are of 90-98% and isolated yields of products (S-methyl derivatives and methyl esters, respectively) are in the range of 85-96%. A comparative study with K2CO3 as a catalyst is also reported. Although the base (K2CO3) turns out to be more active than the zeolite, the chemoselectivity is elusive: compounds 2a,b undergo simultaneous S-methylation and esterification reactions, and acids 3-5 yield complex mixtures of products of O-methylation, O-methoxycarbonylation, and esterification of their OH and CO2H groups, respectively. Overall, the combined use of a nontoxic reagent/solvent (DMC) and a safe promoter (NaY) imparts a genuine ecofriendly nature to the investigated synthesis.

This publication has 19 references indexed in Scilit: