Conformation of cytochromes. X. Conformational and functional studies of chemically modified cytochromes. N-Bromosuccinimide- and formyl-cytochromes

Abstract
N-bromosuccinimide-cytochromes c (Myer, Y. P. (1972), Biochemistry 11, 4195) and formyl-cytochrome c (Aviram, I and Schejter, A. (1971), Biochim. Biophys. Acta 229, 113) have been chromatographically purified, and the resulting components have been characterized in terms of their structure, conformation, and function. The activity measurements are considered in terms of the oxidizability, as the transference of an electron to solubilized cytochrome c oxidase, and reducibility, as the tendency to accept an electron from NADH-cytochrome c reductase. Conformational characterization has been carried out by absorption measurements, pH-spectroscopic behavior, circular dichroism, thermal denaturation, ionization of phenolic hydroxyls, the tendency to form the CO complex, and autoxidation with molecular oxygen. NBS-cytochrome c yields two major components, the relative proportions of which, with increasing modification of the protein, exhibit a pattern typical of the formation of the two in a consecutive manner. The first product contains the modification of the Trp-59 and Met-65 side chains, and the second contains the added modification of Met-80. The former in both valence states of iron is more or less like the native protein, except for an apparently slightly loosened heme crevice; the latter, as in other modifications involving modification of centrally coordinated Met-80, was found to be in a conformational state characteristic of the native protein with a disrupted central coordination complex, a loosened heme crevice, and small, but finite derangement of the polypeptide conformation. Functionally, the first component reflected 55% of the reducibility property and an unimpaired oxidizability property, while the latter exhibited derangement of both aspects of cytochrome c activity. Formyl-cytochrome c yielded a single component with modification of Trp-59. Conformationally, in both valence states, it is a molecular form with a disrupted central coordination complex, a loosened heme crevice, and gross derangement of the overall protein conformation. It exhibits a minimal reducibility property, 12%, whereas it retains a native-like tendency to transfer an electron to cytochrome c oxidase. The data from the NBS-cytochrome c components are analyzed with reference to the two forms in the earlier studies of the unpurified preparations. The results are found to be in agreement with one another. The selectivity between the reducibility and the oxidizability exhibited by the first NBS component and formyl-cytochrome c, irrespective of significant differences in the conformational and coordinational configurations of the two, has been viewed in light of a two-path, two-function model for oxidoreduction, as well as with reference to conformational and structural requirements for the oxidizability and reducibility properties of the molecule.