Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition
Top Cited Papers
- 1 August 2005
- journal article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 98 (3), 033715
- https://doi.org/10.1063/1.2001146
Abstract
The resistive switching mechanism of 20- to 57-nm-thick thin films grown by atomic-layer deposition was studied by current-voltage measurements and conductive atomic force microscopy. Electric pulse-induced resistance switching was repetitively (> a few hundred times) observed with a resistance ratio . Both the low- and high-resistance states showed linear log current versus log voltage graphs with a slope of 1 in the low-voltage region where switching did not occur. The thermal stability of both conduction states was also studied. Atomic force microscopy studies under atmosphere and high-vacuum conditions showed that resistance switching is closely related to the formation and elimination of conducting spots. The conducting spots of the low-resistance state have a few tens times higher conductivity than those of the high-resistance state and their density is also a few tens times higher which results in a times larger overall conductivity. An interesting finding was that the area where the conducting spots do not exist shows a few times different resistance between the low- and high-resistance state films. It is believed that this resistance change is due to the difference in point defect density that was generated by the applied bias field. The point defects possibly align to form tiny conducting filaments in the high-resistance state and these tiny conducting filaments gather together to form stronger and more conducting filaments during the transition to the low-resistance state.
Keywords
This publication has 15 references indexed in Scilit:
- High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer depositionApplied Physics Letters, 2004
- Information storage using nanoscale electrodeposition of metal in solid electrolytesSuperlattices and Microstructures, 2003
- Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interfaceApplied Physics Letters, 2003
- Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystalsApplied Physics Letters, 2001
- Current switching of resistive states in magnetoresistive manganitesNature, 1997
- Electrical phenomena in amorphous oxide filmsReports on Progress in Physics, 1970
- A model for filament growth and switching in amorphous oxide filmsJournal of Non-Crystalline Solids, 1970
- Metal-Insulator TransitionReviews of Modern Physics, 1968
- Switching phenomena in titanium oxide thin filmsSolid-State Electronics, 1968
- Switching properties of thin Nio filmsSolid-State Electronics, 1964