A General Strategy for the Rational Design of Size‐Selective Mesoporous Catalysts

Abstract
A series of functionalized mesoporous silicas with cagelike pore topology has been synthesized and screened for size-selective catalytic transformations. The aluminum-catalyzed Meerwein–Ponndorf–Verley (MPV) reduction of differently sized aromatic aldehydes (benzaldehyde and 1-pyrenecarbox-aldehyde) has been investigated as a test reaction. The catalysts were synthesized in a two-step grafting sequence comprising pore-size engineering of mesoporous silicas (SBA-1, SBA-2, SBA-16) with long-chain alkyl dimethylaminosilanes and surface organoaluminum chemistry with triethylaluminum [{Al(CH2CH3)3}2]. Size-selective reaction behavior was found for small pore SBA-1 materials, and the selectivity could be efficiently tuned by selecting a silylating reagent of appropriate size. The results are compared with the catalytic performance of a large-pore periodic mesoporous organosilica PMO[SBA-1] and the nonporous high-surface-area silicas Aerosil 300/380.