Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane

Abstract
In biochemically active sarcoplasmic reticulum vesicles (SR) the physical state of the membrane lipids was studied by high angle x-ray diffraction and proton nuclear magnetic resonance (NMR) at 220 MHz, and related to thermal effects observed in SR functional parameters. It is shown by high angle x-ray diffraction that even at temperatures as low as 1 degree C nearly all the SR lipid hydrocarbon chains are in a disordered conformation and only a very small part (less than 3%) are in rigid crystalline order. Consistent with this observation, the NMR data indicate that the majority of SR phospholipid molecules are in a state of restricted anisotropic motion having no apparent crystalline order at temperatures as low as 5 degrees C. At this temperature most of the resonance signal is contained in a broad feature-less line of 700-Hz half-width. On the other hand, as the temperature is raised, high-resolution NMR signals, representing groups with highly isotropic motion, begin to grow in intensity. It is estimated that by 35 degrees C 90-100% of the phosphatidylcholine N-methyl protons and 35% of the hydrocarbon-chain protons give high-resolution signals. Concurrent studies on functional parameters reveal thermal effects giving rise to nonlinear Arrhenius plots for the rates of calcium transport and calcium activated ATPase. The thermal effects observed on functional parameters and on the character of phospholipid molecular motion exhibit a parallel behavior, suggesting a relationship between enzyme activity and the physical state of the membrane lipids.