The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance
Open Access
- 1 November 2004
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 61 (22), 2657-2675
- https://doi.org/10.1175/jas3300.1
Abstract
Research funded by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has led to significant improvements in longwave radiative transfer modeling over the last decade. These improvements, which have generally come in small incremental changes, were made primarily in the water vapor self- and foreign-broadened continuum and the water vapor absorption line parameters. These changes, when taken as a whole, result in up to a 6 W m−2 improvement in the modeled clear-sky downwelling longwave radiative flux at the surface and significantly better agreement with spectral observations. This paper provides an overview of the history of ARM with regard to clear-sky longwave radiative transfer, and analyzes remaining related uncertainties in the ARM state-of-the-art Line-by-Line Radiative Transfer Model (LBLRTM). A quality measurement experiment (QME) for the downwelling infrared radiance at the ARM Southern Great Plains site has been ongoing since 1994. This experiment has three objectives: 1) to validate and improve the absorption models and spectral line parameters used in line-by-line radiative transfer models, 2) to assess the ability to define the atmospheric state, and 3) to assess the quality of the radiance observations that serve as ground truth for the model. Analysis of data from 1994 to 1997 made significant contributions to optimizing the QME, but is limited by small but significant uncertainties and deficiencies in the atmospheric state and radiance observations. This paper concentrates on the analysis of QME data from 1998 to 2001, wherein the data have been carefully selected to address the uncertainties in the 1994–97 dataset. Analysis of this newer dataset suggests that the representation of self-broadened water vapor continuum absorption is 3%–8% too strong in the 750–1000 cm−1 region. The dataset also provides information on the accuracy of the self- and foreign-broadened continuum absorption in the 1100–1300 cm−1 region. After accounting for these changes, remaining differences in modeled and observed downwelling clear-sky fluxes are less than 1.5 W m−2 over a wide range of atmospheric states.Keywords
This publication has 38 references indexed in Scilit:
- The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001Journal of Quantitative Spectroscopy and Radiative Transfer, 2003
- Impact of updates to the HITRAN spectroscopic database on the modeling of clear‐sky infrared radiancesGeophysical Research Letters, 2002
- Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data ProcessingJournal of Atmospheric and Oceanic Technology, 2002
- Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3Journal of Geophysical Research: Atmospheres, 2000
- Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26μmJournal of Geophysical Research: Atmospheres, 1999
- Water vapor microwave continuum absorption: A comparison of measurements and modelsRadio Science, 1998
- Infrared spectral radiance measurements in the tropical Pacific atmosphereJournal of Geophysical Research: Atmospheres, 1997
- Line‐by‐line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbonsJournal of Geophysical Research: Atmospheres, 1995
- Observations of water vapor by ground‐based microwave radiometers and Raman lidarJournal of Geophysical Research: Atmospheres, 1994
- Micro pulse lidarIEEE Transactions on Geoscience and Remote Sensing, 1993