Universal scaling law of electrical turbulence in the mammalian heart

Abstract
Many biological processes, such as metabolic rate and life span, scale with body mass (BM) according to the universal law of allometric scaling: Y = aBM(b) (Y, biological process; b, scaling exponent). We investigated whether the temporal properties of ventricular fibrillation (VF), the major cause of sudden and unexpected cardiac death, scale with BM. By using high-resolution optical mapping, numerical simulations and metaanalysis of VF data in 11 mammalian species, we demonstrate that the interbeat interval of VF scales as VF(cycle) (length) = 53 x BM(1/4), spanning more than four orders of magnitude in BM from mouse to horse.