Abstract
At low temperatures, a mean free path of electrons in semiconductors may exceed device dimensions. Current-voltage characteristics, potentials, electrical field, and carrier distributions are calculated for a two-terminal device under such conditions when the electron transport is ballistic. Current-voltage characteristics of a "ballistic" FET are analyzed using an approach similar to the Shockley model. It is shown that very high drift velocities can be obtained at low voltages leading to high speed and low power consumption in possible applications in logic circuits. For example, GaAs logic devices with characteristic dimensions about a micrometer or less at 77 K will be comparable with or better than Josephson tunneling logic gates.

This publication has 6 references indexed in Scilit: