A cation channel in frog lens epithelia responsive to pressure and calcium

Abstract
Patch-clamp recording from the apical surface of the epithelium of frog lens reveals a cation-selective channel after pressure (about ±30 mm Hg) is applied to the pipette. The open state of this channel has a conductance of some 50 pS near the resting potential (−56.1±2.3 mV) when 107mm NaCl and 10 HEPES (pH 7.3) is outside the channel. The probability of the channel being open depends strongly on pressure but the current-voltage relation of the open state does not. With minimal Ca2+ (55±2 μm) outside the channel, the current-voltage relation is nonlinear even in symmetrical salt solutions, allowing more current to flow into the cell than out. The channel, in minimal Ca2+ solution, is selective among the monovalent cations in the following sequence K+>Rb+>Cs+>Na+>Li+. The conductance depends monotonically on the mole fraction of K+ when the other ion present is Li+ or Na+. The single-channel current is a saturating function of [K+] when K+ is the permeant ion, for [K+]≤214mm. When [Ca2+]=2mm, the currentvoltage relation is linearized and the channel cannot distinguish Na+ and K+.