Antimalarial Activity of Compounds Interfering with Plasmodium falciparum Phospholipid Metabolism: Comparison between Mono- and Bisquaternary Ammonium Salts

Abstract
On the basis of a previous structure−activity relationship study, we identified some essential parameters, e.g. electronegativity and lipophilicity, required for polar head analogues to inhibit Plasmodium falciparum phospholipid metabolism, leading to parasite death. To improve the in vitro antimalarial activity, 36 cationic choline analogues consisting of mono-, bis-, and triquaternary ammonium salts with distinct substituents of increasing lipophilicity were synthesized. For monoquaternary ammonium salts, an increase in the lipophilicity around nitrogen was beneficial for antimalarial activity: IC50 decreased by 1 order of magnitude from trimethyl to tripropyl substituents. Irrespective of the polar head substitution (methyl, ethyl, hydroxyethyl, pyrrolidinium), increasing the alkyl chain length from 6 to 12 methylene groups always led to increased activity. The highest activity was obtained for the N,N,N-tripropyl-N-dodecyl substitution of nitrogen (IC50 33 nM). Beyond 12 methylene groups, the antimalarial activities of the compounds decreased slightly. The structural requirements for bisquaternary ammonium salts in antimalarial activity were very similar to those of monoquaternary ammonium salts, i.e. polar head steric hindrance and lipophilicity around nitrogen (methyl, hydroxyethyl, ethyl, pyrrolidinium, etc.). In contrast, with bisquaternary ammonium salts, increasing the lipophilicity of the alkyl chain between the two nitrogen atoms (from 5 to 21 methylene groups) constantly and dramatically increased the activity. Most of these duplicated molecules had activity around 1 nM, and the most lipophilic compound synthesized exhibited an IC50 as low as 3 pM (21 methylene groups). Globally, this oriented synthesis produced 28 compounds out of 36 with an IC50 lower than 1 μM, and 9 of them had an IC50 in the nanomolar range, with 1 compound in the picomolar range. This indicates that developing a pharmacological model for antimalarial compounds through choline analogues is a promising strategy.