Effects of Mn( II ) on nano silicon@polyaniline electrodes in both half and full cells

Abstract
In situ growing conductive polyaniline (PANi) has been regarded as a functional binder to enhance the performance of silicon based anodes in half cells, while few papers discussing the influence of Mn2+ from cathode on full cells. In this paper, the effects of Mn2+ on NSi@PANi electrodes in both half and full cells are investigated, and the mechanism for the fast capacity fade of LiMn2O4/NSi@PANi full cell is elucidated. Results reveal that the full cell will significant accelerate the capacity fade of NSi@PANi anode, and the extra consumption of active Li+ and electrolytes caused by the deposited Mn2+ on silicon anodes in lithium manganate (LMO)/NSi@PANi full cells is confirmed as the main reason of the capacity fade and lower coulombic efficiency for the excessive growth of solid electrolyte interphase.
Funding Information
  • National Natural Science Foundation of China (21561016, 21661015 and 21865014)