Decrease in Peripheral Sympathetic Nervous System Activity following Renal Denervation or Unclipping in the One-Kidney One-Clip Goldblatt Hypertensive Rat

Abstract
Increased sympathetic nervous system activity has been demonstrated in established one-kidney one-clip hypertension in the rat. We have found that renal denervation in this model results in an attenuation of hypertension, unassociated with alterations in sodium or water balance or renin activity. To determine whether the depressor effect of renal denervation is associated with changes in peripheral sympathetic nervous system activity, sham operation (n = 12), renal denervation (n = 13), or unclipping (n = 13) was carried out 2 wk after the onset of one-kidney one-clip hypertension. Normotensive unine-phrectomized age- and sex-matched rats were used as controls (n = 14). Renal denervation resulted in a significant decrease in systolic blood pressure (201±7 to 151±6 mm Hg), while unclipping lowered systolic blood pressure to normotensive levels (130±6 mm Hg). 8 d after operation plasma norepinephrine and mean arterial pressure before and after ganglionic blockade with 30 mg/kg hexamethonium bromide were measured in conscious, unrestrained, resting animals, as indices of peripheral sympathetic nervous system activity. Plasma norepinephrine was significantly higher in hypertensive sham-operated rats (422±42 pg/ml) compared with normotensive controls (282±25 pg/ml) (P < 0.01). Both renal denervation and unclipping restored plasma norepinephrine to normal levels (273±22 and 294±24 pg/ml, respectively). Ganglionic blockade in hypertensive sham-operated animals resulted in a significantly greater decrease in mean arterial pressure than occurred in renal denervated, unclipped, or control rats. The data suggest that the depressor effect of renal denervation or unclipping in the one-kidney one-clip hypertensive rat is associated with a decrease in peripheral sympathetic nervous system activity.