Sensitivity of naturally occurring coliphages to type I and type II restriction and modification

Abstract
Protection against lethal infections by bacteriophage may seem the most likely role of restriction-modification (R-M) systems in bacteria and the reason for their evolution. There are, however, phenomena which question this phage-mediated selection hypothesis for the maintenance of extant R-M systems. Most prominent among these are the mechanisms phage have to avoid or otherwise limit the effects of the restriction endonucleases produced by their host bacteria. To evaluate the importance of these antirestriction mechanisms in Escherichia coli, we have examined the sensitivity of coliphage from natural and laboratory sources to a series of type I and II R-M systems. The results of our study indicate that, in vivo, restriction endonucleases have no effect on a substantial fraction of naturally occurring coliphage. The absence of restriction sites appears to be the most common reason why these phage are unaffected by type II restriction endonucleases, but other antirestriction mechanisms also operate. On the other hand, the frequency of naturally occurring coliphage sensitive to restriction appears sufficiently great for phage-mediated selection to be a viable hypothesis for the maintenance of R-M in E. coli and its accessory elements.