Cell Wall and Protoplast Isoperoxidases of Corn Leaves in Relation to Cut Injury and Infection with Helminthosporium maydis

Abstract
Young leaves of two corn (Zea mays) inbreds with normal and Texas male-sterile cytoplasm, which differed in their susceptibility to Helminthosporium maydis Nisikado and Miyake race T, showed no significant qualitative or quantitative differences in their isoperoxidase patterns. Of six cathodic and four anodic isoenzymes present in the soluble fraction, four and two, respectively, comprised the fraction ionically bound to the cell wall. Peroxidase fractions ionically and covalently bound to the wall constituted about 20% of the total peroxidase activity. No new isoperoxidases were detected in either inbred line in response to cutting, infection, or detachment only and exposure to darkness for 40 hours. Three isoperoxidases, all cathodic, mainly reacted to cutting injury as well as fungal infection. One of the isoperoxidases appeared responsible for the increase in the peroxidase activity of the soluble fraction while the other two were responsible for the increase in that of the fraction ionically bound to the walls. The relative increase in the latter fraction was greater for infected leaves than for mechanically injured ones. No significant differences were found between the two inbreds in their peroxidase reactions to cutting injury or infection. Thus, the corn leaf isoperoxidases were distinctive in their distribution in the cell and in their reaction to injury. Changes in their activity induced by infection may result from a nonspecific response to injury.
Keywords