Molecular model of the action potential sodium channel.

Abstract
Secondary and tertiary structural models of sodium channel transmembrane segments were developed from its recently determined primary sequence in Electrophorus electricus. The model has four homologous domains, and each domain has eight homologous transmembrane segments, S1 through S8. Each domain contains three relatively apolar segments (S1, S2 and S3) and two very apolar segments (S5 and S8), all postulated to be transmembrane alpha-helices. S4 segments have positively charged residues, mainly arginines, at every third residue. The model channel lining is formed by four S4 transmembrane alpha-helices and four negatively charged S7 segments. S7 segments are postulated to be short, partially transmembrane amphipathic alpha-helices in three domains and a beta-strand in the last domain. S7 segments are preceded by short apolar segments (S6) postulated to be alpha-helices in three domains and a beta-strand in the last domain. Positively charged side chains of S4 form salt bridges with negatively charged side chains on S7 and near the ends of S1 and S3. Putative extracellular segments that contain 5 of the 10 potential N-glycosylation sites link S5 to S6. Channel activation may involve a 9helical screw9 mechanism in which S4 helices rotate around their axes as they move toward the extracellular surface.