Mass transport in water waves
- 31 March 1953
- journal article
- research article
- Published by The Royal Society in Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
- Vol. 245 (903), 535-581
- https://doi.org/10.1098/rsta.1953.0006
Abstract
It was shown by Stokes that in a water wave the particles of fluid possess, apart from their orbital motion, a steady second-order drift velocity (usually called the mass-transport velocity). Recent experiments, however, have indicated that the mass-transport velocity can be very different from that predicted by Stokes on the assumption of a perfect, non-viscous fluid. In this paper a general theory of mass transport is developed, which takes account of the viscosity, and leads to results in agreement with observation. Part I deals especially with the interior of the fluid. It is shown that the nature of the motion in the interior depends upon the ratio of the wave amplitude a to the thickness d of the boundary layer: when a2/d2 is small the diffusion of vorticity takes place by viscous ‘conduction’; when a2/d2 is large, by convection with the mass-transport velocity. Appropriate field equations for the stream function of the mass transport are derived. The boundary layers, however, require separate consideration. In part II special attention is given to the boundary layers, and a general theory is developed for two types of oscillating boundary: when the velocities are prescribed at the boundary, and when the stresses are prescribed. Whenever the motion is simple-harmonic the equations of motion can be integrated exactly. A general method is described for determining the mass transport throughout the fluid in the presence of an oscillating body, or with an oscillating stress at the boundary. In part III, the general method of solution described in parts I and II is applied to the cases of a progressive and a standing wave in water of uniform depth. The solutions are markedly different from the perfect-fluid solutions with irrotational motion. The chief characteristic of the progressivewave solution is a strong forward velocity near the bottom. The predicted maximum velocity near the bottom agrees well with that observed by Bagnold.This publication has 9 references indexed in Scilit:
- On the Theory of Oscillatory WavesPublished by Cambridge University Press (CUP) ,2010
- Mass transport in gravity wavesMathematical Proceedings of the Cambridge Philosophical Society, 1953
- SAND MOVEMENT BY WAVES : SOME SMALL-SCALE EXPERIMENTS WITH SAND OF VERY LOW DENSITY.Journal of the Institution of Civil Engineers, 1947
- A Proof of a Certain CongruenceAnnals of Mathematics, 1932
- On the Influence of Viscosity on Waves and CurrentsProceedings of the London Mathematical Society, 1896
- I. On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problemsPhilosophical Transactions of the Royal Society of London, 1884
- XXXII. On wavesJournal of Computers in Education, 1876
- VI. On the exact form of waves near the surface of deep waterPhilosophical Transactions of the Royal Society of London, 1863
- Theorie der WellenAnnalen der Physik, 1809