Abstract
Clonal pheochromocytoma (PC-12) cells have four different types of voltage-dependent K+ channels whose activation does not require high concentrations of Ca++ on the cytoplasmic side of the membrane (Hoshi, T., and R. W. Aldrich, 1988, Journal of General Physiology, 91:73-106). The durations of open and closed events of these four different types of voltage-dependent K+ channels were measured using the excised configuration of the patch-clamp method. The open durations of a class of K+ channels termed the Kz channel, which activates rapidly and inactivates slowly in response to depolarizing pulses, had two exponential components. The closed durations of the Kz channel had at least four exponential components. The time constants of the fastest of the two exponential components in the closed durations were very similar to those of the two exponential components present in the first-latency distribution. The first latencies of the Kz channel decreased steeply with depolarization, contributing to the increased probability of the channel being open with depolarization. The Kz channel also had a very slow gating process that resulted in a clustering of blank sweeps. A gating scheme containing two open states and five closed states is consistent with the observations. The Ky channel had one exponential component in the open durations and three exponential components in the closed durations. The first latencies varied greatly depending on the prepulse voltage and duration. The results were consistent with a sequential model with a large number of closed states and one open state. The Kx channel, which required large hyperpolarizing prepulses to remove steady state inactivation and did not show inactivation with maintained depolarization, had two exponential components in the open durations and three exponential components in the closed durations. The burst behavior of the Kx channel involved many more than two states. The transient Kw channel had one exponential component in the open durations and the mean open time increased with depolarization. The first latencies of the Kw channel were steeply dependent on the voltage, decreasing with depolarization.