Inhibition of soybean lipoxygenase (L-1) and potato 5-lipoxygenase (5-PLO) by the pyrazoline derivatives phenidone and BW755C only occurs after oxidation of these compounds by the peroxidase-like activity of the lipoxygenases. There is a clear relationship between this oxidation and the irreversible inactivation of L-1. The final product of phenidone oxidation by L-1, 4,5-didehydrophenidone, is not responsible of this inactivation, but the species derived from a one-electron oxidation of phenidone plays a key role in L-1 inactivation. In the absence of O2, inactivation of 1 mol of L-1 occurs after the oxidation of 34 mol of phenidone and the covalent binding of 0.8 mol of phenidone-derived metabolite(s) to L-1. In the presence of O2, inactivation of 1 mol of L-1 occurs already after oxidation of 11 mol of phenidone and only involves the covalent binding of 0.4 mol of phenidone-derived metabolite(s) to L-1. A mechanism is proposed for L-1 inactivation by phenidone, which involves the irreversible binding of a phenidone metabolite to the protein and the oxidation of an L-1 amino acid residue (in the presence of O2).