Hamiltonian Formalism and the Canonical Commutation Relations in Quantum Field Theory
- 1 November 1960
- journal article
- research article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 1 (6), 492-504
- https://doi.org/10.1063/1.1703685
Abstract
Cyclic representations of the canonical commutation relations and their connection with the Hamiltonian formalism are studied. The vacuum expectation functional E(f)=(Ψ 0 ,e i[open phi](f) Ψ 0 ) turns out to be a very convenient tool for the discussion. The uniqueness of a translationally invariant state (vacuum) is proved under the assumption of the cluster decomposition property for E(f). The existence and near uniqueness of the Hamiltonian in cyclic representations of the canonical commutation relations are established. The conditions for the relativistic invariance of the theory are stated in terms of vacuum expectation values at a fixed time. It is shown that E(f) is the Fourier transform of a quasi‐invariant nonnegative measure on the space of all linear functionals of the test functions.Keywords
This publication has 14 references indexed in Scilit:
- Representation of States in a Field Theory with Canonical VariablesPhysical Review B, 1960
- Quantum Field Theories with Composite Particles and Asymptotic ConditionsPhysical Review B, 1958
- Distributions in Hilbert space and canonical systems of operatorsTransactions of the American Mathematical Society, 1958
- Configuration Space Methods in Relativistic Quantum Field Theory. IPhysical Review B, 1955
- Les difficultés de divergences pour un modèle particulier de champ quantifiéPhysica, 1952
- Spektraltheorie halbbeschränkter Operatoren I. und II. TeilMathematische Annalen, 1935
- Spektraltheorie halbbeschr nkter Operatoren und Anwendung auf die Spektralzerlegung von DifferentialoperatorenMathematische Annalen, 1934
- Die Eindeutigkeit der Schrödingerschen OperatorenMathematische Annalen, 1931
- Über die analytischen Eigenschaften von Gruppen linearer Transformationen und ihrer DarstellungenMathematische Zeitschrift, 1929
- Quantenmechanik und GruppentheorieThe European Physical Journal A, 1927