Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: Analytic solution
- 1 June 1995
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review E
- Vol. 51 (6), 5609-5627
- https://doi.org/10.1103/physreve.51.5609
Abstract
Steady statistics of a passive scalar advected by a random two-dimensional flow of an incompressible fluid is described in the range of scales between the correlation length of the flow and the diffusion scale. This corresponds to the so-called Batchelor regime where the velocity is replaced by its large-scale gradient. The probability distribution of the scalar in the locally comoving reference frame is expressed via the probability distribution of the line stretching rate. The description of line stretching can be reduced to a classical problem of the product of many random matrices with a unit determinant. We have found the change of variables that allows one to map the matrix problem onto a scalar one and to thereby prove the central limit theorem for the stretching rate statistics. The proof is valid for any finite correlation time of the velocity field. Whatever the statistics of the velocity field, the statistics of the passive scalar (averaged over time locally in space) is shown to approach Gaussian statistics with increase in the Péclet number Pe (the pumping-to-diffusion scale ratio). The first n Received 16 February 1994 DOI: https://doi.org/10.1103/PhysRevE.51.5609 ©1995 American Physical SocietyKeywords
All Related Versions
This publication has 19 references indexed in Scilit:
- Passive scalar convection in a 2D long-range delta-correlated velocity field: Exact resultsJournal of Physics A: General Physics, 1994
- Lagrangian path integrals and fluctuations in random flowPhysical Review E, 1994
- Nonlocal vorticity cascade in two dimensionsPhysical Review E, 1994
- Turbulence with an infinite number of conservation lawsPhysical Review E, 1994
- Is 2D turbulence a conformal turbulence?Physical Review Letters, 1993
- Scale invariant theory of fully developed hydrodynamic turbulence-Hamiltonian approachPhysics Reports, 1991
- Functional integration for quantum magnets: New method and new resultsAnnals of Physics, 1990
- Diffusion of a passive scalar in two-dimensional turbulenceJournal of Fluid Mechanics, 1985
- Feynman path integrals in a phase spaceSoviet Physics Uspekhi, 1980
- Statistical dynamics of two-dimensional flowJournal of Fluid Mechanics, 1975