Glucocorticoid induction of Kv1.5 K+ channel gene expression in ventricle of rat heart.
- 1 December 1994
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 75 (6), 1006-1013
- https://doi.org/10.1161/01.res.75.6.1006
Abstract
Multiple voltage-gated K+ channels contribute to the repolarization phases of the cardiac action potential and are targets of several antiarrhythmic drugs. The Kv1.5 K+ channel gene is expressed in the heart, and heterologous expression of this gene generates a slowly inactivating K+ current. Previously, we found that glucocorticoids specifically upregulate pituitary Kv1.5 gene expression. To test whether these steroids might also induce Kv1.5 gene expression in the heart, cardiac channel mRNA and protein were measured by RNase protection assay and by immunoblotting with antibody specific for the extracellular domain of Kv1.5 polypeptide. Kv1.5 mRNA and immunoreactive protein appeared to be more abundant in rat ventricle than atrium. Reduction of endogenous glucocorticoids by adrenalectomy decreased ventricular Kv1.5 mRNA approximately 8-fold, which was estimated by using cyclophilin mRNA as an internal control. Kv1.5 immunoreactive protein also decreased approximately 6-fold. Injection of dexamethasone into adrenalectomized rats acted within a day to increase ventricular Kv1.5 mRNA and immunoreactive protein approximately 50-fold and approximately 20-fold, respectively. In contrast, atrial Kv1.5 mRNA expression was unaffected by either adrenalectomy or injection of the glucocorticoid agonist. Furthermore, dexamethasone-induced upregulation was specific for Kv1.5, since whole-heart Kv1.4 and Kv2.1 mRNA levels, as well as ventricular Kv2.1 mRNA expression, were unchanged. Thus, dexamethasone specifically upregulates Kv1.5 K+ channel gene expression in rat ventricle but not atrium. Glucocorticoids may affect excitability of ventricular myocytes and the efficacy of clinically useful drugs by changing the expression of the Kv1.5 K+ channel.Keywords
This publication has 35 references indexed in Scilit:
- Inactivation properties of voltage-gated K+ channels altered by presence of β-subunitNature, 1994
- Developmental expression of cloned cardiac potassium channelsFEBS Letters, 1991
- Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes.The Journal of general physiology, 1991
- Molecular cloning and functional expression of a potassium channel cDNA isolated from a rat cardiac libraryFEBS Letters, 1990
- Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brainNeuron, 1990
- Steroid hormones and the cardiovascular system: Direct actions of estradiol, progesterone, testosterone, gluco- and mineralcorticoids, and soltriol [vitamin D] on central nervous regulatory and peripheral tissuesCellular and Molecular Life Sciences, 1990
- Gene for the rat atrial natriuretic peptide is regulated by glucocorticoids in vitro.Journal of Clinical Investigation, 1988
- Ventricular myocytes from neonatal rats are more responsive to dexamethasone than atrial myocytes in synthesis of atrial natriuretic peptideBiochemical and Biophysical Research Communications, 1987
- Ventricular atriopeptin. Unmasking of messenger RNA and peptide synthesis by hypertrophy or dexamethasone.Hypertension, 1987
- Atrial natriuretic peptide mRNA is regulated by glucocorticoids invivoBiochemical and Biophysical Research Communications, 1986