Infrared birefringence of liquid crystals

Abstract
The first measurements of infrared birefringence of liquid crystals are reported. Continuous birefringence spectral data were calculated from measurements of phase differences which occur when monochromatic polarized light propagates through a medium with an anisotropic refractive index. It was found that molecular absorption bands can provide significant resonant enhancement of the refractive indices of liquid crystals, and this effect causes the birefringence of these materials to be relatively large throughout the spectral region from 2 to 16 μm. The birefringence and absorption spectra of two particular liquid crystal mixtures indicate that liquid crystals will be useful for electro-optic applications in the infrared region.