Blood Polymorphonuclear Leukocytes From the Majority of Sickle Cell Patients in the Crisis Phase of the Disease Show Enhanced Adhesion to Vascular Endothelium and Increased Expression of CD64

Abstract
There is increasing interest in the role of blood polymorphonuclear leukocytes (PMNs) in the pathogenesis of sickle cell crisis. We studied the adherence of PMNs from 18 sickle cell patients in crisis, 25 out of crisis, and 43 healthy subjects (controls) to monolayers of human umbilical cord endothelium that were either untreated or pretreated with tumor necrosis factor α (TNFα). Overall, the PMNs from patients in crisis were more adherent than control PMNs to untreated endothelial monolayers (mean 53% increase; P < .001) and TNFα-treated monolayers (mean 41% increase; P < .002). Increased adhesiveness was not associated with an abnormal expression of CD11a, CD11b, CD11c, CD18, CD62L, or CD15. There was an increase in the number of PMNs expressing CD64 in patients in crisis (median value, 44%) compared with patients out of crisis (median, 21%; P = .025) and controls (median, 6.5%; P < .001). Sera from patients in crisis had normal levels of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, TNFα, interleukin-1 (IL-1), IL-6, or IL-8 and did not modify the adherence of PMNs or their expression of CD64. Only IFN-γ induced CD64 expression on PMNs, but this effect was not associated with enhanced binding to endothelium. Because PMNs bound to endothelial monolayers were CD64+ and CD64-enriched PMNs were 7 times more adherent to endothelial monolayers than CD64-depleted PMNs, it is likely that CD64 is a marker of adherent PMNs. Two of the three anti-CD64 antibodies used in our antibody blocking studies (clones 32.2 and 197) partially inhibited the binding of sickle cell PMNs to untreated endothelium (mean inhibitions of 33% [P = .01] and 21% [P = .03], respectively), whereas only one (clone 197) inhibited binding to TNFα-treated endothelium (mean inhibition, 29%; P = .004). In some patients with sickle cell disease, an enhanced PMN adhesion to vascular endothelium could contribute to the vascular occlusion that characterizes the acute crisis of the disease.