The sensitivity of tropical temperature to glacial forcing is examined by using an atmosphere–mixed layer ocean (A–MLO) model to simulate the climate of the last glacial maximum (LGM) following specifications established by the Paleoclimate Modeling Intercomparison Project. Changes in continental ice, orbital parameters, atmospheric CO2, and sea level constitute a global mean radiative forcing of −4.20 W m−2, with the vast majority of this forcing coming, in nearly equal portions, from the changes in continental ice and CO2. In response to this forcing, the global mean surface air temperature decreases by 4.0 K, with the largest cooling in the extratropical Northern Hemisphere. In the Tropics, a more modest cooling of 2.0 K (averaged from 30°N to 30°S) is simulated, but with considerable spatial variability resulting from the interhemispheric asymmetry in radiative forcing, contrast between oceanic and continental response, advective effects, and changes in soil moisture. Analysis of the tropical... Abstract The sensitivity of tropical temperature to glacial forcing is examined by using an atmosphere–mixed layer ocean (A–MLO) model to simulate the climate of the last glacial maximum (LGM) following specifications established by the Paleoclimate Modeling Intercomparison Project. Changes in continental ice, orbital parameters, atmospheric CO2, and sea level constitute a global mean radiative forcing of −4.20 W m−2, with the vast majority of this forcing coming, in nearly equal portions, from the changes in continental ice and CO2. In response to this forcing, the global mean surface air temperature decreases by 4.0 K, with the largest cooling in the extratropical Northern Hemisphere. In the Tropics, a more modest cooling of 2.0 K (averaged from 30°N to 30°S) is simulated, but with considerable spatial variability resulting from the interhemispheric asymmetry in radiative forcing, contrast between oceanic and continental response, advective effects, and changes in soil moisture. Analysis of the tropical...