Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin

Abstract
Most fast inhibitory neurotransmission in the brain is mediated by GABA A receptors, which are mainly postsynaptic and consist of diverse α and ß subunits together with the γ2 subunit. Although the γ2 subunit is not necessary for receptor assembly and translocation to the cell surface, we show here that it is required for clustering of major postsynaptic GABAA receptor subtypes. Loss of GABAA receptor clusters in mice deficient in the γ2 subunit, and in cultured cortical neurons from these mice, is paralleled by loss of the synaptic clustering molecule gephyrin and synaptic GABAergic function. Conversely, inhibiting gephyrin expression causes loss of GABAA receptor clusters. The γ2 subunit and gephyrin are thus interdependent components of the same synaptic complex that is critical for postsynaptic clustering of abundant subtypes of GABAA receptors in vivo.