Atorvastatin as a potential anti-malarial drug: in vitro synergy in combinational therapy with quinine against Plasmodium falciparum
Open Access
- 25 May 2010
- journal article
- Published by Springer Nature in Malaria Journal
- Vol. 9 (1), 139
- https://doi.org/10.1186/1475-2875-9-139
Abstract
Quinine (QN) remains the first line anti-malarial drug for the treatment of complicated malaria in Europe and Africa. The emergence of QN resistance has been documented. QN resistance is not yet a significant problem, but there is an urgent need to discover partners for use in combination with QN. The aim of the study was to assess the in vitro potentiating effects of atorvastatin (AVA), a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, in combination with QN against Plasmodium falciparum and to evaluate whether the effects of AVA could be associated with gene copy number or mutations in genes involved in QN resistance, such as pfcrt, pfmdr1, pfmrp and pfnhe. The susceptibilities to combination of AVA with QN were assessed against 21 parasite strains using the in vitro isotopic microtest. Genotypes and gene copy number were assessed for pfcrt, pfmdr1, pfmdr2, pfmrp genes. In addition, the number of DNNND, DDNHNDNHNN repeats in pfnhe-1 ms4760 and the ms4760 profile were determined for each strains of P. falciparum. AVA demonstrated synergistic effects in combination with QN against 21 P. falciparum strains. The QN IC50 was reduced by 5% (0% to 15%; 95%CI: 1%-8%), 10% (3% to 23%; 95%CI: 7%-14%) and 22% (14% to 40%; 95%CI: 19%-25%) in presence of AVA at concentrations of 0.1, 0.5 and 1.0 μM, respectively. These reductions were all significant (p < 0.009). The reduction in the QN IC50 in presence of AVA was not significantly correlated with the QN IC50 (r = 0.22, P = 0.3288) or the AVA IC50 (r = 0.03, P = 0.8946). The synergistic effect of AVA in combination with QN was not significantly associated with polymorphisms in the pfcrt, pfmdr1, pfmrp, and pfnhe-1 genes that could be involved in QN resistance. The synergistic effect of AVA on QN responses was not significantly associated with pfmdr1 copy number (P = 0.0428). The synergistic effect of AVA in combination with QN was found to be unrelated to mutations occurring in transport protein genes involved in QN drug resistance. The different mechanisms of drug uptake and/or mode of action for AVA compared to the other anti-malarial drugs, as well as the AVA-mediated synergy of the anti-malarial effect of QN, suggests that AVA will be a good candidate for combinatorial malaria treatment. All of these observations support calls for both an in vivo evaluation with pharmacokinetic component and clinical trials of AVA as an anti-malarial therapy.Keywords
This publication has 62 references indexed in Scilit:
- Atorvastatin as a Potential Antimalarial Drug: In Vitro Synergy in Combinational Therapy with DihydroartemisininAntimicrobial Agents and Chemotherapy, 2010
- Artemisinin Resistance inPlasmodium falciparumMalariaNew England Journal of Medicine, 2009
- Probing the multifactorial basis of Plasmodium falciparum quinine resistance: Evidence for a strain-specific contribution of the sodium-proton exchanger PfNHEMolecular and Biochemical Parasitology, 2009
- Atorvastatin Is a Promising Partner for Antimalarial Drugs in Treatment of Plasmodium falciparum MalariaAntimicrobial Agents and Chemotherapy, 2009
- Plasmodium falciparumNa+/H+Exchanger 1 Transporter Is Involved in Reduced Susceptibility to QuinineAntimicrobial Agents and Chemotherapy, 2009
- Evidence of Artemisinin-Resistant Malaria in Western CambodiaNew England Journal of Medicine, 2008
- Statins Alone Are Ineffective in Cerebral Malaria but Potentiate ArtesunateAntimicrobial Agents and Chemotherapy, 2008
- In Vitro Activity of Ferroquine Is Independent of Polymorphisms in Transport Protein Genes Implicated in Quinoline Resistance in Plasmodium falciparumAntimicrobial Agents and Chemotherapy, 2008
- Simvastatin Treatment Shows No Effect on the Incidence of Cerebral Malaria or Parasitemia during Experimental MalariaAntimicrobial Agents and Chemotherapy, 2008
- Atorvastatin Is 10-Fold More Active In Vitro than Other Statins against Plasmodium falciparumAntimicrobial Agents and Chemotherapy, 2007