A study of producing ethanol from cellulose using Clostridium thermocellum

Abstract
The feasibility of producing ethanol in a continuous system from cellulose using Clostridirrrn thermocellum was investigated. This anaerobic and therniophilic bacterium was able to degrade cellulose directly into ethanol with acetic acid, hydrogen. and carbon dioxide as by‐products of this fermentation. The fermentation was first carried out in a batch mode to study the effects of buffers, temperature, and agitation on microbial growth and ethanol production. From the compounds used to control pH. sodium bicarbonate had the most preferred effects on generation time and ethanol production. As expected, there was a positive relationship between temperature and growth rate. On the other hand, agitation did not benefit from ethanol production or microbial growth. The possibility of noncompetitive inhibition within such a system was deduced from the calculation of the kinetic constants Km and Vmax. Continuous fermentations were carried out at 60°C and pH 7.0 using 1.5 and 3% pure cellulose as a limiting substrate. The maximum ethanol concentration reached during the 1.5% cellulose fermentation was 0.3%. and 0.9% during the 3% cellulose fermentation. The yield of ethanol was about 0.3 grams per gram of consumed cellulose. The overall yield in both schemes was around 0.45 and 0.75 grams per gram of cellulose degraded. It was concluded that cellulose could be degraded continuously in a system with C. thermocellum for production of ethanol. While the continuous system like the batch method is feasible, it may not be promising as yet because of the slow generation time of this microorganism.

This publication has 15 references indexed in Scilit: