Abstract
Cultured human vascular endothelial cells obtained from umbilical cord veins were observed to acquire adhesive properties for purified neutrophils after exposure to IL 1, endotoxin, and tumor-promoting phorbol diesters. Adhesiveness induced by IL 1 and endotoxin had similar kinetics of onset, producing no change after 30 min incubation and reaching optimal change by 4 hr of incubation. The phorbol diester TPA induced changes in adhesiveness more rapidly, with half maximal increase induced by a 15- to 30-min exposure. TPA, but not IL 1 of LPS, induced significant morphologic changes in the endothelial cell monolayer. None of the stimuli decreased endothelial cell viability. All stimuli induced increased adhesiveness at relevant concentrations, i.e., endotoxin, 0.01 to 1 .mu.g/ml; IL 1, 0.5 to 2 U/ml; and TPA, 1 to 30 ng/ml. Structure activity relationships among phorbol diesters indicate that the response occurs through a typical phorbol diester "receptor". A protein synthesis inhibitor (cycloheximide) and an RNA synthesis inhibitor (actinomycin D) prevented the acquisition of adhesiveness stimulated by IL 1 and endotoxin but not by TPA. In addition, TPA showed a differential temperature sensitivity in inducing adhesiveness in endothelial cells. IL 1 and endotoxin did not produce the effect with a 4-hr incubation at 22.degree. or 4.degree. C, whereas TPA was effective at these lower temperatures. Purified human IL 2 and recombinant-derived interferon-.gamma. failed to induce adhesiveness in vascular endothelial cells. Indicating that this is not a general property of lymphokines. We conclude that endothelium may, under some circumstances, play an active role in producing a leukocyte infiltrate at a local tissue site by acquiring adhesive properties. The production of IL 1 by tissue macrophages, etc., may serve as an important initiator of an inflammatory cell infiltrate. Finally, an action of tumor-promoting phorbol diesters in increasing endothelial cell adhesiveness, combined with their known effects in activating leukocytes, may help explain the extraordinary inflammatory potency of these compounds.