Length-dependent sensitivity in vascular smooth muscle

Abstract
Dose-response curves were obtained from dog anterior tibial artery rings at various lengths (L) to determine whether sensitivity to norepinephrine (NE) and potassium (K+) depends on arterial circumference. The dose for half maximal response (ED50) was determined by graphical estimation and by calculation from a best fit curve. For both NE and K+: 1) ED50 was lowest (most sensitive) at L for maximum active force (Lmax) and increased significantly as L decreased from Lmax; 2) ED50 at 1.0 and 1.15 Lmax was not significantly different; 3) ED50 of repeated dose-response curves at Lmax was not significantly different; and 4) when the direction of length change was reversed (from decreasing to increasing), the direction of change in ED50 was also reversed (from increasing to decreasing). Change in the dose for 10% maximal response was the same as ED50. The results did not depend on the method of determining ED50 or on whether responses were expressed as absolute values or as relative values. The results show that sensitivity of vascular smooth muscle depends on L and that the length-sensitivity relation is similar to the length-active tension relation. Similarity of results for NE and K+ indicate that length-dependent sensitivity does not depend on the method of stimulation.