Alterations in PBP 1A Essential for High-Level Penicillin Resistance in Streptococcus pneumoniae
- 1 June 1998
- journal article
- research article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 42 (6), 1329-1333
- https://doi.org/10.1128/aac.42.6.1329
Abstract
High-level penicillin resistance in pneumococci is due to alterations in penicillin-binding proteins (PBPs) 2X, 2B, and 1A. We have sequenced the penicillin-binding domain of PBP 1A from penicillin-resistant South African pneumococcal isolates and have identified amino acid substitutions which are common to all the resistant isolates analyzed. Site-directed mutagenesis was then used to determine whether particular amino acid substitutions at specific positions in PBP 1A mediate penicillin resistance. PCR was used to isolate PBP 2X, 2B, and 1A genes from clinical isolate 8303 (penicillin MIC, 4 μg/ml). These wild-type PBP genes were cloned into pGEM-3Zf and were used as the transforming DNA. Susceptible strain R6 (MIC, 0.015 μg/ml) was first transformed with PBP 2X and 2B DNA, resulting in PBP 2X/2B-R6 transformants for which MICs were 0.25 μg/ml. When further transformed with PBP 1A DNA, 2X/2B/1A-R6 transformants for which MICs were 1.5 μg/ml were obtained. Site-directed mutagenesis of the PBP 1A gene from isolate 8303 was then used to reverse particular amino acid substitutions, followed by transformation of PBP 2X/2B-R6 transformants with the mutagenized PBP 1A DNA. For PBP 2X/2B/1A-R6 transformants, the introduction of the reversal of Thr-371 by Ser or Ala in PBP 1A decreased the MIC from 1.5 to 0.5 μg/ml, whereas the reversal of four consecutive amino acid substitutions (Thr-574 by Asn, Ser-575 by Thr, Gln-576 by Gly, and Phe-577 by Tyr) decreased the MIC from 1.5 to 0.375 μg/ml. These data reveal that amino acid residue 371 and residues 574 to 577 of PBP 1A are important positions in PBP 1A with respect to the interaction with penicillin and the development of resistance.Keywords
This publication has 25 references indexed in Scilit:
- Resistance Determinants for β-Lactam Antibiotics in Laboratory Mutants ofStreptococcus pneumoniaeThat Are Involved in Genetic CompetenceMicrobial Drug Resistance, 1996
- Penicillin-Binding Proteins as Resistance Determinants in Clinical Isolates ofStreptococcus pneumoniaeMicrobial Drug Resistance, 1996
- Genetics of high level penicillin resistance in clinical isolates ofStreptococcus pneumoniaeFEMS Microbiology Letters, 1995
- Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X ofStreptococcus pneumoniaeFEMS Microbiology Letters, 1993
- Intercontinental Spread of a Multiresistant Clone of Serotype 23F Streptococcus pneumoniaeThe Journal of Infectious Diseases, 1991
- Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin‐resistant clinical isolates of Streptococcus pneumoniaeMolecular Microbiology, 1991
- Antigenic Variation of Penicillin-Binding Proteins from Penicillin-Resistant Clinical Strains of Streptococcus pneumoniaeThe Journal of Infectious Diseases, 1991
- Extensive re‐modelling of the transpeptidase domain of penicillin‐binding protein 2B of a penicillin‐resistant South African isolate of Streptococcus pneumoniaeMolecular Microbiology, 1989
- Amino acid substitutions that reduce the affinity of penicillin‐binding protein 3 of Escherichia coli for cephalexinEuropean Journal of Biochemistry, 1985
- STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPESThe Journal of Experimental Medicine, 1944