Calcium induced glucagon release in monolayer culture of the endocrine pancreas. Studies with ionophore A23187

Abstract
The possible role of Ca2+ in glucagon release has been investigated by the use of ionophore A23187. This ionophore permits Ca2+ entry down a suitable concentration gradient by complexing and releasing Ca2+, thereby acting as a carrier in plasma membranes. Cultured cells obtained by enzymatic digestion of pancreases from newborn rats were studied on the third day of culture. As expected the effects of the ionophore were dependent upon the presence of Ca2+ in the medium. However, either stimulation or inhibition of glucagon release resulted when different concentrations of ionophore and Ca2+ were used. With 1.0 mM Ca2+ in the medium, glucagon release was stimulated in the presence of 0.01 and 0.1 μg/ml ionophore, but inhibited in the presence of 3.0 and 10.0 μg/ml. With 0.1 μg/ml ionophore, glucagon release was stimulated by 0.3 and 1.0 mM Ca2+ but not by 2.5 mM Ca2+. With 10 μg/ml ionophore glucagon release was stimulated by 0.03, 0.1 and 0.3 mM Ca2+, whereas at 1.0 mM, glucagon release was depressed. These findings suggest that by increasing Ca2+, glucagon is released from the A-cells, whereas too large an increase in Ca2+ is inhibitory. The effect to stimulate release was not completely specific for Ca2+ in that while the ionophore did not stimulate release in the presence of either Mg2+ or Sr2+ in the absence of Ca2+, it did stimulate release when Ba2+ was tested. Furthermore Ba2+ at 0.3 mM was stimulatory even in the absence of ionophore. Glucagon release in the absence of ionophore was also enhanced by addition of 30 mM Ca2+ or by omission of Ca2+ from the medium. It is concluded that Ca2+, which plays an essential role in the stimulus-secretion coupling in several different cell types, may be involved in the stimulation of glucagon release from the A-cells of the pancreas.