Experiments are presented which demonstrate the statistical nature of the buckling of thin strips under very high axial compression. Probability distributions of wavelengths determined theoretically from assumed “white-noise” perturbations in initial shape are compared favorably with the experimental distributions. In other experiments, a new optical-lever method of recording lateral motions is used to observe bending waves and buckling in an impacted strip. From these and experiments on large-strain buckling of rubber strips it is concluded that effects of axial-wave propagation do not significantly influence the wavelengths at which the buckles form.