Expression of a Nonpolymerizable Actin Mutant in Sf9 Cells

Abstract
We have succeeded in expressing actin in the baculovirus/Sf9 cell system in high yield. The wild-type (WT) actin is functionally indistinguishable from tissue-purified actin in its ability to activate ATPase activity and to support movement in an in vitro motility assay. Having achieved this feat, we used a mutational strategy to express a monomeric actin that is incapable of polymerization. Native actin requires actin binding proteins or chemical modification to maintain it in a monomeric state. The mutant actin sediments in the analytical ultracentrifuge as a homogeneous monomeric species of 3.2 S in 100 mM KCl and 2 mM MgCl2, conditions that cause WT actin to polymerize. The two point mutations that render actin nonpolymerizable are in subdomain 4 (A204E/P243K; “AP-actin”), distant from the myosin binding site. AP-Actin binds to skeletal myosin subfragment 1 (S1) and forms a homogeneous complex as demonstrated by analytical ultracentrifugation. The ATPase activity of a cross-linked AP-actin·S1 complex is higher than that of S1 alone, although less than that supported by filamentous actin (F-actin). AP-Actin is an excellent candidate for structural studies of complexes of actin with motor proteins and other actin-binding proteins.