Abstract
Nutrients required for the growth of the embryo and endosperm of developing wheat (Triticum aestivum L.) grains are released into the endosperm cavity from the maternal tissues across the nucellar cell plasma membranes. We followed the uptake and efflux of sugars into and out of the nucellus by slicing grains longitudinally through the endosperm cavity to expose the nucellar surface to experimental solutions. Sucrose uptake and efflux are passive processes. Neither was sensitive to metabolic inhibitors, pH, or potassium concentration. p-Chloromercuribenzene sulfonate, however, strongly inhibited both uptake and efflux, although not equally. Except for p-chloromercuribenzene sensitivity, these characteristics of efflux and the insensitivity of Suc movement to turgor pressure are similar to those of sucrose release from maize pedicels, but they contrast with legume seed coats. Although the evidence is incomplete, movement appears to be carrier mediated rather than channel mediated. In vitro rates of sucrose efflux were similar to or somewhat less than in vivo rates, suggesting that transport across the nucellar cell membranes could be a factor in the control of assimilate import into the grain.