A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA.

Abstract
Apoptosis (programmed cell death) can be difficult to detect in routine histological sections. Since extensive DNA fragmentation is an important characteristic of this process, visualization of DNA breaks could greatly facilitate the identification of apoptotic cells. We describe a new staining method for formalin-fixed, paraffin-embedded tissue sections that involves an in situ end-labeling (ISEL) procedure. After protease treatment to permeate the tissue sections, biotinylated nucleotides are in situ incorporated into DNA breaks by polymerase and subsequently stained with DAB via peroxidase-conjugated avidin. Staining of cells with the morphological characteristics of apoptosis was demonstrated in tissues known to exhibit programmed cell death, i.e., prostate and uterus after castration, tumors, lymph node follicles, and embryos. Apoptotic cells could be discriminated morphologically from areas of labeled necrotic cells, in which DNA degradation also occurs. Because apoptosis is relatively easily recognized in H&E-stained sections of involuting prostates of castrated rats, we used this model system to validate the ISEL method for the quantification of apoptotic cells. A high correlation was found between the fractions of ISEL-labeled cells and the fractions of apoptotic cells that were morphologically determined in adjacent sections. We conclude that ISEL is a useful technique for quantification of apoptosis in paraffin sections, especially for those tissues in which morphological determination is difficult. Furthermore, this new staining method enables the use of automated image cytometry for evaluating apoptosis.