The structure of microbial communities in soil and the lasting impact of cultivation

Abstract
The structure of microbial communities was examined as a function of community composition and the relative abundance of specific microbial groups to examine the effects that plant community composition and land-use history have on microbial communities in the soil. The sites sampled were part of the Long Term Ecological Research (LTER) project in agricultural ecology at the W.K. Kellogg Biological Station of Michigan State University (Hickory Corners, MI) and included both active and abandoned agricultural fields as well as nearby fields that had never been cultivated. Microbial community structure was assessed by extracting total RNA from soil samples and using 16S rRNA-targeted oligonucleotide probes to quantify the abundance of rRNA from the alpha, beta, and gamma Proteobacteria, the Actinobacteria (Gram positive bacteria with a high mol % G+C genome), the Bacteria, and the Eukarya. In addition, soil microbial communities were characterized by examining fluorescently tagged terminal restriction fragment length polymorphisms (T-RFLP) in PCR amplified 16S rDNA. Microbial community structure was observed to be remarkably similar among plots that shared a long-term history of agricultural management despite differences in plant community composition and land management that have been maintained on the plots in recent years. In contrast, microbial community structure differed significantly between fields that had never been cultivated and those having a long-term history of cultivation.