Modelling the dynamics of F-actin in the cell

Abstract
The regulation of the interactions between the actin binding proteins and the actin filaments are known to affect the cytoskeletal structure of F-actin. We develop a model depicting the formation of actin cytoskeleton, bundles and orthogonal networks, via activation or inactivation of different types of actin binding proteins. It is found that as the actin filament density increases in the cell, a spontaneous tendency to organize into bundles or networks occurs depending on the active actin binding protein concentration. Also, a minute change in the relative binding affinity of the actin binding proteins in the cell may lead to a major change in the actin cytoskeleton. Both the linear stability analysis and the numerical results indicate that the structures formed are highly sensitive to changes in the parameters, in particular to changes in the parameter ϕ, denoting the relative binding affinity and concentration of the actin binding proteins.