Gene therapy of severe combined immunodeficiencies

Abstract
Recent advances in gene transfer in human hematopoietic cells, combined with a better understanding of the genetic aspects of several immunodeficiencies, has offered new opportunities in the domain of gene therapy. Severe combined immunodeficiency (SCID) appear to represent a good model for the application of gene therapy, combining an expected selective advantage for transduced cells, an absence of immunological response to the vector and/or the therapeutic transgene, together with accessibility to hematopoietic stem cells (HSC). Ex vivo retroviral transduction of a therapeutic transgene in HSC prior to transplantation appears to be a particularly effective and long-lasting means of restoring the expression of a mutated gene in the lymphoid lineage. Furthermore, encouraging therapeutic benefits as a result of a gene therapy protocol for the treatment of X-linked severe combined immunodeficiencies (SCID-X1) invites many questions as to the reasons for this therapeutic benefit. This review outlines the results that have been achieved in gene therapy for SCID-X1, ADA-SCID as well as other types of SCID, and discusses the possible relationship between the physiopathology of each disease and the success of relevant trials.